Skip to content
Techie News UK Logo
Menu
  • Home
Menu

Ultrafast light-emitting device brings quantum computing dreams closer to reality

Posted on 27 July 2015

An ultrafast light-emitting device of microscopic size capable of turning on and off 90 billion times a second and one that has the potential of bringing quantum computing to reality has been developed by researchers.

A team of researchers from the Pratt School of Engineering, Duke University have developed the so-called plasmonic device wherein semiconductor quantum dots emit light at more than 90 billion gigahertz. This device, researchers say, could some day be used in optical computing chips or for optical communication between traditional electronic microchips.

The study has been published in Nature Communications.

The Basics

Computer processors are getting faster and faster and the building blocks of these data crunching powerhouses – transistors – use electrons to flip on and off billions of times per second. However, in a quest to increase the processing abilities of our computers, researchers posed a question – what if these microchips could use photons instead of electrons to process and transmit data?

The answer led to developing of quantum computing theories wherein computers would become blazing fast with the only limitation the speed of data processing will be constrained by the source of light that would generate the photons need to transfer data in the optical chips or in between two traditional chips.

Engineers have to build light source that can be turned on and off rapidly and to cater to this requirement, they thought of using lasers. However, they are too energy-hungry and unwieldy to integrate into computer chips. This requirement called for development of such a light source that is capable of generating photons at the speed required.

“This is something that the scientific community has wanted to do for a long time,” said Maiken Mikkelsen, an assistant professor of electrical and computer engineering and physics at Duke. “We can now start to think about making fast-switching devices based on this research, so there’s a lot of excitement about this demonstration.”

A nanoscale view of the new superfast fluorescent system using a transmission electron microscope. The silver cube is just 75-nanometers wide. The quantum dots (red) are sandwiched between the silver cube and a thin gold foil. CREDIT Maiken Mikkelsen, Duke University
A nanoscale view of the new superfast fluorescent system using a transmission electron microscope. The silver cube is just 75-nanometers wide. The quantum dots (red) are sandwiched between the silver cube and a thin gold foil.
CREDIT
Maiken Mikkelsen, Duke University

Plasmonics

The new speed record was set using plasmonics. When a laser shines on the surface of a silver cube just 75 nanometers wide, the free electrons on its surface begin to oscillate together in a wave. These oscillations create their own light, which reacts again with the free electrons. Energy trapped on the surface of the nanocube in this fashion is called a plasmon.

The plasmon creates an intense electromagnetic field between the silver nanocube and a thin sheet of gold placed a mere 20 atoms away. This field interacts with quantum dots — spheres of semiconducting material just six nanometers wide — that are sandwiched in between the nanocube and the gold. The quantum dots, in turn, produce a directional, efficient emission of photons that can be turned on and off at more than 90 gigahertz.

“There is great interest in replacing lasers with LEDs for short-distance optical communication, but these ideas have always been limited by the slow emission rate of fluorescent materials, lack of efficiency and inability to direct the photons,” said Gleb Akselrod, a postdoctoral research in Mikkelsen’s laboratory. “Now we have made an important step towards solving these problems.”

“The eventual goal is to integrate our technology into a device that can be excited either optically or electrically,” said Thang Hoang, also a postdoctoral researcher in Mikkelsen’s laboratory. “That’s something that I think everyone, including funding agencies, is pushing pretty hard for.”

The group is now working to use the plasmonic structure to create a single photon source — a necessity for extremely secure quantum communications — by sandwiching a single quantum dot in the gap between the silver nanocube and gold foil. They are also trying to precisely place and orient the quantum dots to create the fastest fluorescence rates possible.

Aside from its potential technological impacts, the research demonstrates that well-known materials need not be limited by their intrinsic properties.

“By tailoring the environment around a material, like we’ve done here with semiconductors, we can create new designer materials with almost any optical properties we desire,” said Mikkelsen. “And that’s an emerging area that’s fascinating to think about.”

Ravi
Ravi

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Norton Secure VPN Ad

Advertisement

Recent Posts

  • Most Watched Netflix Movies in the UK
  • 4 Best British Technology and Science YouTube Channels
  • Most Watched Netflix Movies in Ireland
  • 5 Weird Things That Surprise Tourist About Technology in Ireland
  • British And Irish Science Influencers on TikTok
Norton Secure VPN Ad

Advertisement

Categories

  • Apple
  • Apps
  • Books
  • Business
  • Cars
  • Cloud
  • Compliance
  • Entertainment
  • Featured
  • Future Tech
  • Gadgets
  • Gaming
  • General Tech
  • Global Tech News
  • Health
  • History
  • Industry Voice
  • Influencers
  • Management
  • Mobile
  • Open Source
  • Podcasts
  • Public Sector
  • Roundup
  • Science
  • Security
  • Software
  • Tablets
  • Techie Deals
  • Technology
  • UK & Ireland Tech News
  • Web
  • World
  • WTF
©2025 Techie News (UK and Ireland) | techienews.co.uk   Privacy Policy | Terms of Use | ***DMCA Policy***    🇬🇧 🇮🇪
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT