Skip to content
Techie News UK Logo
Menu
  • Home
Menu

Successful gene-editing paves way to prevent mitochondrial diseases

Posted on 23 April 2015

Researchers over at Salk Institute have successfully used gene-editing technology to prevent mutated mitochondrial DNA associated with multiple human mitochondrial diseases from being passed from mothers to their offspring in mouse model potentially having broad clinical implications in prevention of transmission of disease-causing mutations to future generations.

Mitochondrial diseases are maternally inherited genetic disorders that cause a wide spectrum of debilitating conditions and which currently have no cure.

According to senior study author Juan Carlos Izpisua Belmonte of the Salk Institute for Biological Studies their technique is based on a single injection of mRNA into a mother’s oocytes or early embryos and therefore could be easily implemented in IVF [in vitro fertilization] clinics throughout the world.

Mitochondrial diseases

Mitochondria are known as the powerhouse of the cell because they generate most of the cell’s supply of energy. Each cell in the body contains anywhere from 1,000 to 100,000 copies of mitochondrial DNA, which is exclusively transmitted through maternal inheritance.

In most patients with mitochondrial disease, mutated and normal mitochondrial DNA molecules are mixed together in cells. A high percentage of mutated mitochondrial DNA can lead to the degeneration and catastrophic failure of various organs, resulting in serious health problems such as seizures, dementia, diabetes, heart failure, liver dysfunction, vision loss, and deafness.

Current therapies

Currently, therapies for preventing the transmission of mitochondrial diseases from mother to child are limited. While genetic screening of embryos only partially reduces the risk of transmitting mitochondrial diseases, an approach called mitochondrial replacement therapy, in which healthy mitochondria are provided by another donor, is being evaluated in the US and soon to be allowed in the UK but has raised ethical, safety, and medical concerns because it involves combining genetic material from three different individuals.

The promise

In the new study, Belmonte and his team demonstrated the therapeutic promise of an alternative approach that allows the direct correction of the mutated DNA in mitochondria by using DNA-cutting enzymes called restriction endonucleases and TALENs. This gene-editing approach might be safer, simpler, and more ethical than mitochondrial replacement therapy because it does not require donor eggs. The enzymes are designed to target a specific mutated DNA sequence and introduce a precise cut that destroys the mutated mitochondrial DNA while leaving the normal mitochondrial DNA intact, thereby shifting the balance toward a healthy genetic state in mitochondria.

To test this approach, the researchers used a mouse model that carries two different types of mitochondrial DNA and designed TALENs and restriction endonucleases to target and destroy only one type of mitochondrial DNA in the eggs of these mice. This approach decreased the levels of the targeted mitochondrial DNA, while sparing the untargeted mitochondrial DNA.

The injected mouse embryos, which showed normal patterns of development, were then transferred to female mice, which gave birth to healthy pups that had low levels of the targeted mitochondrial DNA in various organs. In addition, the pups exhibited normal behavior, mitochondrial function, and genomic integrity. Moreover, the offspring themselves gave birth to pups that showed barely detectable levels of the targeted mitochondrial DNA, demonstrating the potential of this approach for preventing the transgenerational transmission of mitochondrial diseases.

To confirm the clinical relevance of this strategy, the researchers next screened and tested TALENs designed to target human mitochondrial DNA mutations that cause two disorders, Leber’s hereditary optic neuropathy and dystonia (LHOND) and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP). This approach resulted in a significant reduction in mutated mitochondrial DNA in mouse eggs that contained genetic material from patient cells. “We expect that this method will reduce the percentage of mutated mitochondrial DNA below the threshold for triggering mitochondrial diseases in humans,” Belmonte says.

But before any clinical trials begin, it will be necessary to evaluate the safety and efficacy of the method in eggs from patients with mitochondrial diseases. Toward this goal, Belmonte’s team is collaborating with several IVF clinics to test this technology in surplus human eggs that are donated by patients with mitochondrial diseases for research purposes.

“In our opinion, due to the hundreds of thousands of copies of mitochondrial DNA present in human eggs, and the fact that double-strand breaks in mitochondrial DNA generally lead to the elimination of these molecules, we believe that the selective elimination of mutated mitochondrial DNA in the germline could be safer than nuclear genome editing and therefore might represent a starting point for the study and use of these new technologies in human embryos,” Belmonte says.

Ravi
Ravi

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Norton Secure VPN Ad

Advertisement

Recent Posts

  • Most Watched Netflix Movies in the UK
  • 4 Best British Technology and Science YouTube Channels
  • Most Watched Netflix Movies in Ireland
  • 5 Weird Things That Surprise Tourist About Technology in Ireland
  • British And Irish Science Influencers on TikTok
Norton Secure VPN Ad

Advertisement

Categories

  • Apple
  • Apps
  • Books
  • Business
  • Cars
  • Cloud
  • Compliance
  • Entertainment
  • Featured
  • Future Tech
  • Gadgets
  • Gaming
  • General Tech
  • Global Tech News
  • Health
  • History
  • Industry Voice
  • Influencers
  • Management
  • Mobile
  • Open Source
  • Podcasts
  • Public Sector
  • Roundup
  • Science
  • Security
  • Software
  • Tablets
  • Techie Deals
  • Technology
  • UK & Ireland Tech News
  • Web
  • World
  • WTF
©2025 Techie News (UK and Ireland) | techienews.co.uk   Privacy Policy | Terms of Use | ***DMCA Policy***    🇬🇧 🇮🇪
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT