Skip to content
Techie News UK Logo
Menu
  • Home
Menu

Researchers print silicon on flexible electronic circuitry using lasers

Posted on 23 April 2015

Researchers have managed to create fully flexible electronic circuitry by producing silicon directly on a substrate from liquid silicon ink with a single laser pulse thereby paving way for a range of applications including biomedical sensors, stretchable electronics and possibly even edible electronics.

In seeking to develop the next generation of micro-electronic transistors, researchers have long sought to find the next best thing to replace silicon. To this end, a wealth of recent research into fully flexible electronic circuitry has focused on various organic and metal-oxide ink materials, which often lack all the favorable electronic properties of silicon but offer superior “printability.”

Recently, a group of researchers at Delft University of Technology, in the Netherlands, has pioneered a method that allows silicon itself, in the polycrystalline form used in circuitry, to be produced directly on a substrate from liquid silicon ink with a single laser pulse — potentially ousting its pale usurpers.

The capacity for printing silicon ink onto substrates has existed for some time, but necessitated a 350° C thermal annealing step — far too hot for many of the flexible surfaces that made production appealing in the first place. The researcher’s new method completely bypasses this step, transforming the liquid silicon directly into polysilicon. They discuss their research this week in Applied Physics Letters, from AIP Publishing.

“It was very simple,” said Ryoichi Ishihara, the professor who led the research team at Delft University of Technology, with collaborators at the Japan Advanced Institute of Science and Technology in Ishikawa, Japan.

“We coated liquid polysilane directly on paper by doctor-blading, or skimming it by a blade directly in oxygen free environment. Then we annealed the layer with an excimer-laser [a conventional tool used for manufacturing smartphone displays]. And it worked,” Ishihara said.

The laser blast only lasted a few tens of nanoseconds, leaving the paper completely intact. In testing its conductive performance, Ishihara and his colleagues found that thin-film transistors using the laser-printed layer exhibited mobilities as high as those of conventional poly-silicon conductors.

The most immediate application of this printing capacity is in wearable electronics, as it allows for the production of fast, low-power and flexible transistors at a remarkably low cost. Ishihara believes the future of the project, which involves improving the production process of the thin-film transistors to include additional non-silicon layers, will hold a wealth of possible further applications.

“The process can be expanded to biomedical sensor and solar-cell areas,” Ishihara said, “and will also realize stretchable – and even edible – electronics!”

Ravi
Ravi

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Norton Secure VPN Ad

Advertisement

Recent Posts

  • Most Watched Netflix Movies in the UK
  • 4 Best British Technology and Science YouTube Channels
  • Most Watched Netflix Movies in Ireland
  • 5 Weird Things That Surprise Tourist About Technology in Ireland
  • British And Irish Science Influencers on TikTok
Norton Secure VPN Ad

Advertisement

Categories

  • Apple
  • Apps
  • Books
  • Business
  • Cars
  • Cloud
  • Compliance
  • Entertainment
  • Featured
  • Future Tech
  • Gadgets
  • Gaming
  • General Tech
  • Global Tech News
  • Health
  • History
  • Industry Voice
  • Influencers
  • Management
  • Mobile
  • Open Source
  • Podcasts
  • Public Sector
  • Roundup
  • Science
  • Security
  • Software
  • Tablets
  • Techie Deals
  • Technology
  • UK & Ireland Tech News
  • Web
  • World
  • WTF
©2025 Techie News (UK and Ireland) | techienews.co.uk   Privacy Policy | Terms of Use | ***DMCA Policy***    🇬🇧 🇮🇪
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT