Researchers have long been trying to develop treatment and vaccines for Malaria and a similar effort by researchers at University of Dundee has resulted into development of an antimalarial compound that holds promise of offering a single dose treatment for the disease.
The collaborative efforts of researchers at University of Dundee’s Drug Discovery Unit (DDU) and Medicines for Malaria Venture (MMV) has led to discovery of a novel antimalarial compound dubbed DDD107498, which not only holds the potential of treating malaria patients in a single doze, but also helps reduce the transmission of the parasite.
Professor Ian Gilbert, Head of Chemistry at the Drug Discovery Unit, who led the team that discovered the compound has pegged the discovery and profiling of the compound as exciting and says that beyond the treatment and stopping of transmission of the parasite, it protect a person from developing the disease in the first place.
Despite the promising results, Professor Gilbert is quick to point that there is still some way to go before the compound can be given to patients.
“Malaria continues to threaten almost half of the world’s population – the half that can least afford it,” said Dr David Reddy, MMV’s CEO. “DDD107498 is an exciting compound since it holds the promise to not only treat but also protect these vulnerable populations. The collaboration to identify and progress the compound, led by the Drug Discovery Unit at the University of Dundee, drew on MMV’s network of scientists from Melbourne to San Diego. The publication of the research is an important step and a clear testament to the power of partnership.”
Dr Kevin Read, joint leader of the project, also based at the Drug Discovery Unit at Dundee, said, “New drugs are urgently needed to treat malaria, as resistance to the current gold-standard antimalarial drug is now considered a real threat. The compound we have discovered works in a different way to all other antimalarial medicines on the market or in clinical development, which means that it has great potential to work against current drug-resistant parasites. It targets part of the machinery that makes proteins within the parasite that causes malaria.”
“The need for new antimalarial drugs is more urgent than ever before, with emerging strains of the parasite now showing resistance against the best available drugs,” said Dr Michael Chew from the Wellcome Trust, which provides funding for the Dundee DDU and MMV. “These strains are already present at the Myanmar-Indian border and it’s a race against time to stop resistance spreading to the most vulnerable populations in Africa. The discovery of this new antimalarial agent, which has shown remarkable potency against multiple stages of the malaria lifecycle, is an exciting prospect in the hunt for viable new treatments.”
“Our partnership with MMV was critical to the progress of this compound,” added Professor Ian Gilbert. “Dr Paul Willis at MMV and Sir Simon Campbell, a mentor from MMV’s Expert Scientific Advisory Committee, gave invaluable input to the project. We have extensively profiled the compound, investigating its properties to understand how it works; this could not have been done without MMV’s scientific input and support of its network of partners around the world.”