fbpx

#Health

UBC researchers make progress in being able to change blood types

By  | 

Researchers have inched closer in their goal of being able to change blood types – a possible answer to blood transfusion and non-availability of a specific blood type issues.

Chemists and scientists at the Centre for Blood Research, University of British Columbia have created an enzyme that could potentially help achieve this goal. The enzyme works by snipping off the sugars, also known as antigens, found in Type A and Type B blood, making it more like Type O. Type O blood is known as the universal donor and can be given to patients of all blood types.

“We produced a mutant enzyme that is very efficient at cutting off the sugars in A and B blood, and is much more proficient at removing the subtypes of the A-antigen that the parent enzyme struggles with,” said David Kwan, the lead author of the study and a postdoctoral fellow in the Department of Chemistry.

To create this high-powered enzyme capable of snipping off sugars, researchers used a new technology called directed evolution that involves inserting mutations into the gene that codes for the enzyme, and selecting mutants that are more effective at cutting the antigens. In just five generations, the enzyme became 170 times more effective.

With this enzyme, UBC associate professor Jayachandran Kizhakkedathu and colleagues in the Centre for Blood Research were able to remove the wide majority of the antigens in Type A and B blood. But before it can be used in clinical settings, the enzyme used would need to remove all of the antigens. The immune system is highly sensitive to blood groups and even small amounts of residual antigens could trigger an immune response.

“The concept is not new but until now we needed so much of the enzyme to make it work that it was impractical,” says Steve Withers, a professor in the Department of Chemistry. “Now I’m confident that we can take this a whole lot further.”

The study was published in the Journal of the American Chemical Society and was supported by the Canadian Institutes of Health Research and Canadian Blood Services.